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We have performed large-scale molecular dynamics simulations of a dynamical variant of the classical
Heisenberg model in which the spins are replaced by interacting ‘‘linear molecules,’’ each of which has two
rotational degrees of freedom. The Hamiltonian consists of rotational kinetic-energy terms as well as nearest-
neighbor Heisenberg-like interactions2Jsi•sj , where si is a unit vector specifying the orientation of the
molecule at lattice sitei . Systems of size up to 643 spins on the simple cubic lattice have been studied, and
thermostatting is used to maintain strictly constant temperature. We determined the dynamic structure function
from the time- and space-displaced correlation functions, and found good agreement with the predictions of the
dynamic scaling theory with a dynamic critical exponent ofz51.5. Results are compared and contrasted with
data from spin-dynamics calculations on classical Heisenberg ferromagnets and antiferromagnets.@S1063-
651X~96!07605-2#

PACS number~s!: 64.60.Ht, 75.40.Gb, 75.10.Hk, 02.70.Ns

I. INTRODUCTION

Over several decades one of the most important methods
of studying the critical behavior of interacting many-body
systems has involved Monte Carlo simulation. This ap-
proach, together with exact series enumeration and methods
originating from the renormalization group, has resulted in
high-quality critical exponent estimates@1# for numerous
models, despite the fact that analytic solutions for these mod-
els have so far proved unobtainable.

Surprisingly, the molecular dynamics~MD! approach
@2,3# has, with only a single exception@4#, not been applied
to the study of critical phenomena. There appear to be two
reasons for this situation. The first is that many of the sys-
tems studied do not have an obvious classical-mechanical
formulation, principally due to the quantum origins of spin,
which is the basic element of most models studied in this
context. The second is the requirement for precise tempera-
ture regulation near the critical point; the most familiar form
of MD is carried out at constant energy, corresponding to the
microcanonical ensemble, rather than in the canonical en-
semble where the critical temperature is a well-defined state
point.

Neither of these reasons precludes the use of MD in the
study of critical phenomena. It is possible to construct me-
chanical models belonging to the same universality classes
as some of the better known spin systems. The resulting
equations of motion can then be modified, so that instead of
the system being tied to a constant-energy hypersurface in
phase space~the microcanonical ensemble!, the dynamics
can be subjected to a constant-temperature constraint, or
thermostat, which leads to the equilibrium behavior of the
canonical ensemble. Although this method is often employed
for simulating fluids@5,6#, one example being a homoge-
neously sheared flow, where it is used to counteract the ef-
fects of viscous heating, we are not aware of it having been
utilized previously in the study of critical phenomena.

While the static aspects of critical phenomena are rela-
tively well understood, e.g.,@7#, our knowledge of the dy-
namical side of this problem is on a less sound footing. The
stochastic nature of Monte Carlo simulation precludes its use
in the study of dynamical critical behavior, with the excep-
tion of critical relaxation@8,9#. The use of MD, on the other
hand, permits the modeling of the true dynamical behavior,
in which propagating modes play a key role. Our goal has
been to apply the constant-temperature MD technique to a
system of coupled linear molecules, whose equilibrium static
properties are exactly those of the classical Heisenberg fer-
romagnet, with a view to determining how well the predic-
tions of dynamical scaling theory are satisfied, and how the
nature of the dynamics affects the dynamical universality
class. These results represent the first study of dynamical
critical behavior in a system whose dynamics incorporates
inertial effects; while there have been dynamical studies that
preclude the role of inertia@10#, there is good reason to be-
lieve that the presence of kinetic energy could have a signifi-
cant impact on the critical dynamics.

The organization of this paper is as follows. In Sec. II we
introduce the model, provide an overview of the dynamical
scaling theory of critical phenomena as it applies to this par-
ticular study, and mention previous numerical work on re-
lated problems. In Sec. III the computational methodology is
discussed. The results of the simulations, together with com-
parisons with theory and other numerical studies, appear in
Sec. IV. Our conclusions are presented in Sec. V.

II. BACKGROUND

A. Model

In the present study, the spins of the familiar classical
Heisenberg model are replaced by linear molecules—for
convenience we will continue to apply the term ‘‘spin’’ to
each molecule—that are free to rotate about the sites of a
regular simple cubic lattice~needless to say, the same ap-
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proach can also be applied to other kinds of continuous spin
systems!. Assuming that nearest neighbors interact via the
usual Heisenberg spin-exchange interaction, the Hamiltonian
for the system can be written~for zero external field!

H5
1

2
I(

i
v i
22J(J

~ i , j !
si•sj , ~1!

wheresi is the unit vector along the molecular axis~or spin
direction!, vi the angular velocity,I the moment of inertia of
the molecule, andJ the strength of the spin-exchange inter-
action. The second of the sums is over all pairs of nearest-
neighbor spins, with periodic boundaries used to reduce
finite-size effects.

A straightforward derivation of the Hamilton equations
@11# from ~1! results in a pair of first-order equations of
motion for each spini ,

I v̇i5Jsi3(
j
sj , ~2!

ṡi5vi3si , ~3!

where the sum is over the neighborsj of spin i . Equation~2!
is just the Euler equation for a linear rigid body.

B. Dynamic scaling theory

The general framework for classifying and analyzing dy-
namical critical phenomena is well established@12,13#. The
scheme used there for assigning systems to different univer-
sality classes is based on entirely general considerations in-
volving the underlying dynamics and applicable conserva-
tion laws. Among other results, it was demonstrated how
systems with the same static critical behavior~such as ferro-
magnets and antiferromagnets!, which therefore belonged to
the same static universality class, can belong to different
dynamic universality classes.

The study of critical dynamics deals with the space- and
time-displaced spin-correlation function

Ck~r2r 8,t !5^sr
k~ t !sr8

k
~0!&2^sr

k~ t !&^sr8
k

~0!&, ~4!

where^ & denotes an ensemble average andk5x,y,z are the
Cartesian spin components. For the purposes of this analysis
the spins are indexed by a vectorr , which also provides the
spatial coordinates of the lattice sites~assuming that the lat-
tice spacing is unity!. The Fourier transform of~4! is the
~real-valued! experimentally observable dynamic structure
~or neutron-scattering! function

Sk~q,v!5
1

A2p
(
r ,r8

exp@ iq~r2r 8!#E
2`

1`

exp~ ivt !

3Ck~r2r 8,t !dt. ~5!

The assumption is now made thatSk~q,v! can be expressed
in terms of the correlation lengthj,

Sj
k~q,v!5

1

vm~q,j!
Sj
k~q! f 1S v

vm~q,j!
,q,j D , ~6!

whereSj
k~q! is given by

Sj
k~q!5E

2`

1`

Sj
k~q,v!dv, ~7!

f 1 is a normalized shape function satisfying

E
2`

1`

f 1~x,q,j!dx51, ~8!

and the characteristic frequencyvm~q,j! is defined to be the
median value determined from the integral

E
2vm~q,j!

1vm~q,j!

Sj
k~q,v!dv5

1

2
Sj
k~q!. ~9!

The dynamic scaling hypothesis@12,13# states that in the
critical regionvm has the functional form

vm~q,j!5qzV1~qj!, ~10!

wherez is the dynamical critical exponent, and that the func-
tion f 1 also depends only on the productqj ~whereq5uqu!,
but not on the values ofq and j separately; thus Eq.~6!
becomes

Sj
k~q,v!5vm

21Sj
k~q! f 2~v/vm ,qj!. ~11!

For finite-size systems, the divergent correlation lengthj is
limited by the linear size of the systemL, and in the spirit of
finite-size scaling theory@14# we can replacej by L in ~10!
and ~11! to obtain@10#

vm~q,L !5L2zV2~qL! ~12!

and

SL
k~q,v!5vm

21SL
k~q! f 2~v/vm ,qL!. ~13!

If we now substitute~12! into ~13! we obtain

SL
k~q,v!

SL
k~q!

5Lzf 3~vLz,qL!. ~14!

The form of the arguments of the functionsf 3 andV2 pro-
vides a clear guide to the kinds of tests that should be carried
out on the measured dynamic structure function in order to
establish the applicability of dynamic scaling.

All that remains is to determine a theoretical estimate for
the exponentz based on a knowledge of the low-frequency
spin-wave dispersion relation at low temperatures@15#. For
the Heisenberg ferromagnet, wherev(q) is quadratic inq,
both dynamic scaling and renormalization group theory pre-
dict @12,13# that

z532b/n, ~15!

whereb and n are familiar static exponents whose three-
dimensional~3D! values are to be found in@16#, while for
the antiferromagnet, wherev(q) is linear, the exponent
value is

z5d/2, ~16!
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whered is the dimensionality~these results apply ford be-
low the upper critical dimension!. In 3D these predictions
correspond toz52.48 for the ferromagnet andz51.5 for the
antiferromagnet. The reason the antiferromagnetic version of
the model is introduced will become apparent in Sec. IV.

C. Previous numerical work

An alternative approach to studyingS~q,v! is based on
equations of motion that exclude all mention of inertial ef-
fects. The Hamiltonian in this case~for zero external field! is
exactly that of the classical Heisenberg model,

H52J(
~ i , j !

si•sj , ~17!

and the equations of motion, derived as the classical limit of
the quantum mechanical equations@17#, have the form

ṡi5Jsi3(
j
sj . ~18!

These equations describe spins precessing in the local fields
created by their neighbors, and conserve both magnetization
and interaction energy. Given that they are significantly dif-
ferent from those used in the MD approach—Eqs.~2! and
~3!—there is little reason to expect that the dynamical prop-
erties will have very much in common.

Since there is no kinetic energy defined for this ‘‘spin-
dynamics’’ model, results for a given temperature can only
be obtained by first generating a set of states drawn from the
canonical ensemble by some suitable Monte Carlo procedure
and then using these states as the initial configurations of a
series of independent dynamical computations. This ap-
proach has been used in the spin-dynamics study of the dy-
namical properties of Heisenberg ferromagnets@10# and an-
tiferromagnets@18# on the bcc lattice. In both cases the
measured dynamic structure functionS~q,v! was found to
obey dynamic scaling theory, and thez exponents found to
have the theoretically predicted values; finite-size effects
seemed more pronounced in the antiferromagnetic case.

III. METHODOLOGY

A. Equations of motion

By redefining the time unit to beAI /J we can eliminate
the quantitiesI andJ from the equations of motion, so that
Eq. ~2! becomes

v̇i5si3gi , ~19!

where

gi5(
j
sj ~20!

is a sum over the nearest neighbors ofi . For computational
convenience the pair of first-order Eqs.~3! and ~19! can be
replaced by a single second-order equation@3#

s̈i5gi2~si•gi1 ṡi
2!si . ~21!

The derivation of this equation assumesvi•si50, but if this
condition is incorporated into the construction of the initial
state then it is clear from the form of the first-order equations
that it always remains true; note thatvi itself does not ap-
pear in~21!.

The equations of motion~21! are energy conserving.
Study of the critical region requires a more precisely regu-
lated temperature than that obtainable from MD of this kind,
which is subject to considerable~size-dependent! tempera-
ture fluctuations. The solution to this problem is the intro-
duction of a thermostat. To convert the equations of motion
into a form that conserves kinetic energy, and thus tempera-
ture, the standard procedure of introducing a Lagrange mul-
tiplier is followed. The result@3# is that the equation of mo-
tion ~21! is replaced by

s̈i5gi2~si•gi1 ṡi
2!si1a ṡi , ~22!

where

a52
(mṡm•@gm2~sm•gm1 ṡm

2 !sm#

(mṡm
2 ~23!

is the Lagrange multiplier that ensures constant kinetic en-
ergy;a is evaluated at each time step, immediately following
the interaction calculation, and used in the right-hand side of
~22!. The phase-space trajectories no longer obey Newtonian
dynamics, but the deviations are small~obviously decreasing
as the system size is increased!; the equilibrium configura-
tional properties are now precisely those of the canonical
ensemble@5,6#.

The equations of motion~22! are solved using a standard
fourth-order predictor-corrector method@2,3#, with a time
stepDt50.01. To reduce the cumulative effects of numerical
inaccuracy the lengths of the vectorssi are renormalized ev-
ery 50 time steps. Minor temperature adjustments~since
there are two degrees of freedom per spinT5^ṡi

2& in units
where bothI and the Boltzmann constantkB are unity! are
made by rescaling the values ofṡi every 200 steps; without
this, a temperature drift of one part in 1023 occurs over 106

time steps, an amount which, though small, begins to ap-
proach the temperature precision required for critical-point
studies.

The results reported here involve simple cubic lattices of
sizeN5L3 spins, withL ranging from 16 to 64. The com-
plete run lengths are approximately 2.23106 time steps in
each case, of which the first 33105 are used to allow the
system to equilibrate. The initial state consists of all spins
parallel, with angular velocities having a fixed magnitude
based on the desired temperature and randomly assigned di-
rections satisfying the requirementvi•si50. Typical compu-
tational speed for the largest system is approximately 4ms
per spin step on an IBM 6000/590 processor; thus the largest
run reported here requires roughly 700 hours of computation.

It should be pointed out that this approach can be used not
only to study the dynamical behavior of the model—the sub-
ject of this paper—but also the equilibrium static properties;
this will be addressed elsewhere. Although MD appears to be
competitive with the basic metropolis Monte Carlo approach,
it is unable to compete with recent refinements of the method
~such as cluster sampling and histogram reweighting! that
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are able to yield extremely precise estimates of the static
critical properties@16#. But, unlike Monte Carlo simulation,
MD provides the means for studying critical spin dynamics:
the only form of spin ‘‘dynamics’’ that can be studied by
Monte Carlo is entirely stochastic in nature, whereas MD
correctly accounts for the contribution of inertial effects to
the dynamics.

B. Spin correlations

In studying the spin correlations we restrict theq vectors
to those directed along the coordinate axes; this permits a
considerable reduction in the computational effort and stor-
age requirements of the program~already close to 60 Mbytes
for the largest system! without any reduction in the effective-
ness of the analysis. If, for example, we chooseq5~q,0,0!,
where the values ofq are limited by the periodic boundaries
to q52pn/L ~n51,2, . . .!, the spatial Fourier transform in
~5! becomes

(
r ,r8

exp@ iq•~r2r 8!#sr
k~ t !sr8

k
~0!5(

r xr x8
exp@ iq~r x2r x8!#

3F (
r y ,r z

sr
k~ t !GF (

r y8 ,r z8
sr8
k

~0!G . ~24!

This implies that only a 1D Fourier transform of the corre-
lations between the summed spin components in they2z
plane is required, rather than a full 3D transform involving
all the spins; a minor disadvantage of the technique~not
relevant to the present study! is that the original spatial cor-
relations cannot be recovered from these results. For im-
proved statistics, the other on-axis components ofq can be
similarly treated, and the three sets of results averaged.

For a finite system atTc the magnetization~per spin!

m5
1

N (
i
si ~25!

is nonzero, so the spin correlations should be decomposed
into longitudinal~parallel tom! and transverse parts, just as
is the practice belowTc . Thus instead of evaluating the cor-
relations between the Cartesian components of the spin vec-
tors, we consider the correlations between the spin compo-
nents,

si
l5~si•em!em , ~26!

si
t5si2si

l , ~27!

whereem5m/umu. This leads us to the longitudinal and trans-
verse dynamic structure functionsSl~q,v! and St~q,v!, the
latter computed as an average of separate contributions from
each of the three components ofsi

t.
The spin correlations are measured every 20 time steps; a

full set of correlation function measurements extends over an
interval exceeding 400 time units~providing a total of 2049
data points! for L516, 32, 48, and twice this value for
L564. To improve the statistics, the measurement intervals
are made to overlap; collection of data for a new set of cor-
relation measurements is begun every 128th measurement—

this implies that there are 16 sets of measurements in
progress simultaneously for the three smaller systems, and
32 for the largest. A total of 600 such intervals contribute to
the final result; in order to estimate error bar magnitudes the
results are divided into six sets and the rms spread used as a
measure of the statistical error.

IV. RESULTS

In this discussion the focus is on the dynamical behavior
resulting from MD simulations at the critical temperatureTc
of the infinite system. The Monte Carlo method has proved
capable of producing very preciseTc estimates, as well as
critical exponent values; for the simple cubic lattice~in units
of J! Tc51.443 ~the actual value is 1.442 92960.000 077!
@16#.

In Fig. 1 we show the transverse dynamic structure func-
tion St(q,v) for the largest system~L564! and for the low-
est threeq values, namely,q5np/32,n51, . . . ,3~here and
in subsequent figures error bars are included for a fraction of
the data points only!. The MD results show spin-wave peaks
at q-dependent frequencies~note thatq andv are expressed
in dimensionless MD units!. There is no evidence for a cen-
tral peak~corresponding to spin diffusion! in these results; if
one exists it is completely swamped by the pair of spin-wave
peaks~the curve is of course symmetric aboutv50!. Corre-
sponding results for the longitudinal functionSl(q,v) are
shown in Fig. 2; here the central peak is the only feature
present. By way of contrast, the spin-dynamics approach~on
the bcc lattice! shows evidence of a central peak, even in the
transverse case, for both the ferromagnetic@10# and antifer-
romagnetic@18# systems.

The S(q,v) results presented here have not been sub-
jected to any smoothing, and because the correlation func-
tions are measured out to sufficiently long times that, despite
critical slowing down, the observable correlations are essen-
tially at the noise level@roughly 0.01 for the transverse cor-
relation functions that have been normalized so that

FIG. 1. Transverse dynamic structure function forL564 and
q5np/32, n51, . . . ,3;typical error bars are shown.
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Ct~r ,0!51#, there is no need to apply a window function@19#
to the data prior to the Fourier transformation, as was the
case in the spin-dynamics study of the ferromagnet@10#.
While windowing does eliminate much of the noise from the
data, it also has the effect of lowering and broadening any
peaks that are present; even a Gaussian window function that
drops to about 0.04 of the maximum height at the extreme of
the L564 measurement interval reduces theSt(q,v) peak
height by about 10%, and this is best avoided.

To provide some indication of the way the peaks change
as the system size increases, Figs. 3 and 4 showSt(q,v) and
Sl(q,v) at the smallest possible wave numberq52p/L for
L516,...,64. The peaks are seen to become narrower asL
increases, and in the transverse case, to increase in height
and also shift to smallerv.

The dynamic scaling theory makes a specific prediction,
given by Eq.~12!, as to the way the median frequency should
vary with q and L, namely, that for the correct choice of
exponentz, the value ofLzvm should depend only on the
product qL. In Fig. 5 we show these results forqL/2p
51, . . . ,4 using the antiferromagnetic exponent value
z51.5. Note the practically horizontal line forn51, as pre-
dicted by dynamic scaling theory; a small change in the
value ofz ~by a few percent! destroys this theoretically pre-
dicted behavior. The quality of the results drops for highern
because shorter wavelengths are involved.

The other prediction of dynamic scaling theory to be
tested here is the nature of the scaled form ofSt(q,v),
namely, Eq.~14!. Figure 6 shows the results forqL/2p51,2

FIG. 2. Longitudinal dynamic structure function~see Fig. 1!.

FIG. 3. Transverse dynamic structure function forq52p/L and
L516,32,48,64.

FIG. 4. Longitudinal dynamic structure function~see Fig. 3!.

FIG. 5. Scaled median frequencyLzvm as a function ofL for
n[qL/2p51, . . . ,4.
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and L532,48,64, with the exponent valuez51.5: as pre-
dicted, the curves for differentL but the sameqL coincide to
within measurement accuracy~this conclusion is not particu-
larly sensitive to a small variation—less than 10%—inz!.
The spread of values between the different curves is similar
to that observed in the spin-dynamics study of the antiferro-
magnet@18#.

Clearly the results are consistent with the valuez51.5,
which is the result predicted for the antiferromagnetic
Heisenberg model. The reasons for not expecting to obtain
the ferromagnetic value~z52.48! are that, unlike spin dy-
namics, the magnetization is not conserved by the MD equa-
tions of motion, and that the spin-wave dispersion relation is
linear—as shown in Fig. 7 where the locations of the
maxima ofSt(q,v) are plotted forL532 and temperatures
0.8, 1.0, andTc ~the T50 result,v(q)52 sin~q/2), is also
included!—the dependence exhibited by the antiferromagnet.
By way of contrast, the corresponding Monte Carlo estimate
for the Heisenberg ferromagnet isz51.96 @20#, a result due
entirely to the underlying relaxation mechanism.

To emphasize the difference in the dynamics between MD
and spin dynamics, Fig. 8 shows the magnetizationm ~5umu!
as a function of time for the duration of theL564 run; each
data point is the average of the magnitude of the magnetiza-
tion vectorm over 23104 time steps, an interval consider-
ably greater than that for which individual spin correlations
persist. The results appear very noisy, with no obvious cor-
relations. In the calculation for a ferromagnet based on spin
dynamics, the magnetization would remain fixed at the value
reached during the preceding Monte Carlo phase.

Figure 9 shows a simple visual fit ofS(q,v) for the low-
estq value ~p/32! using a double Lorentzian

AG

G21~v2vs!
2 1

AG

G2~v1vs!
2 ~28!

to describe the spin-wave peaks; the parameter values are
A5231023, G50.01, andvs50.02. The fit is of reasonable

quality, although slightly too large at lowv; the quality of
the data and possible residual finite-size effects do not war-
rant a more refined attempt at curve fitting that would in-
clude a small contribution from another Lorentzian atv50.
A somewhat poorer fit is obtained using the alternative func-
tional form

AG

G21~v22vs
2!2

~29!

proposed in@12#; the values ofA and G used here are
1.2531024 and 631024, respectively.

Both MD and spin dynamics support dynamic scaling,
although the results differ in detail—in particular, the

FIG. 8. Magnetization as a function of time~L564!.

FIG. 6. Scaled transverse dynamic structure functions for
L532,48,64 andqL/2p51 ~left peaks! and 2 ~right peaks!; here
z51.5.

FIG. 7. Dispersion curves at and below belowTc for L532; the
T50 result is also shown.
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strength of the transverse central peak. Because of the differ-
ent dynamics, MD requires more computation than spin dy-
namics and does not benefit from the decorrelating effects
produced by the Monte Carlo construction of initial states;
furthermore, the time intervals over which the correlations
are measured are several times longer for MD than for spin
dynamics~in the reduced units appropriate to each problem!.
On the other hand, the MD approach addresses a Hamil-

tonian system into which other features, such as lattice vi-
brations, can readily be incorporated, and it also provides the
basis for the study of related phenomena, such as the rota-
tional phases of molecular crystals.

V. CONCLUSIONS

The dynamical critical behavior of a dynamical version of
the Heisenberg ferromagnet has been studied by MD simu-
lation. The results for the dynamic structure function are
found to be in reasonable agreement with the predictions of
dynamical scaling theory. The dynamical critical exponentz
does not have the ferromagnetic value~z52.48! but rather
the value predicted for the antiferromagnet~z51.5!, indicat-
ing that the model belongs to the dynamical universality
class of the antiferromagnet. The plausibility of this result
derives from the fact that, due to the inclusion of the kinetic-
energy term, the low-temperature dispersion relation is
linear—as in the antiferromagnet—as opposed to the qua-
dratic dependence which arises if the ferromagnetic Hamil-
tonian contains the potential energy term alone. The fact that
the MD results differ from those obtained by the spin-
dynamics approach~where the kinetic energy term is absent!
is further evidence of the important role played by the equa-
tions of motion in determining the dynamical universality
class.
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