PHYSICAL REVIEW E VOLUME 53, NUMBER 5 MAY 1996

Critical dynamics of a dynamical version of the classical Heisenberg model

D. C. Rapaport
Physics Department, Bar-llan University, Ramat-Gan 52900, Israel

D. P. Landau
Center for Simulational Physics, University of Georgia, Athens, Georgia 30602
(Received 17 October 1995

We have performed large-scale molecular dynamics simulations of a dynamical variant of the classical
Heisenberg model in which the spins are replaced by interacting “linear molecules,” each of which has two
rotational degrees of freedom. The Hamiltonian consists of rotational kinetic-energy terms as well as nearest-
neighbor Heisenberg-like interactionsJs-s;, wheres is a unit vector specifying the orientation of the
molecule at lattice sité. Systems of size up to 84pins on the simple cubic lattice have been studied, and
thermostatting is used to maintain strictly constant temperature. We determined the dynamic structure function
from the time- and space-displaced correlation functions, and found good agreement with the predictions of the
dynamic scaling theory with a dynamic critical exponentefl.5. Results are compared and contrasted with
data from spin-dynamics calculations on classical Heisenberg ferromagnets and antiferronj&dio&3-
651X(96)07605-2

PACS numbe(s): 64.60.Ht, 75.40.Gb, 75.10.Hk, 02.70.Ns

I. INTRODUCTION While the static aspects of critical phenomena are rela-
tively well understood, e.g[,7], our knowledge of the dy-
Over several decades one of the most important method¥mical side of this problem is on a less sound footing. The
of studying the critical behavior of interacting many-body stochastic nature of Monte Carlo simulation precludes its use
systems has involved Monte Carlo simulation. This ap-n the study of dynamical critical behavior, with the excep-
proach, together with exact series enumeration and methodi§n of critical relaxatior{8,9]. The use of MD, on the other
originating from the renormalization group, has resulted inhand, permits the modeling of the true dynamical behavior,
high-quality critical exponent estimatdd] for numerous N which propagating modes play a key role. Our goal has
models, despite the fact that analytic solutions for these mod2€€n to apply the constant-temperature MD technique to a
els have so far proved unobtainable. system of coupled linear molecules, whose equilibrium static
Surprisingly, the molecular dynamicéVD) approach Properties are exactly those of the classical Heisenberg fer-
[2,3] has, with only a single exceptidd], not been applied "omagnet, with a view to determining how well the predic-
to the study of critical phenomena. There appear to be twdons of dynamical scaling theory are satisfied, and how the
reasons for this situation. The first is that many of the syshature of the dynamics affects the dynamical universality
tems studied do not have an obvious classical-mechanic&l@ss. These results represent the first study of dynamical
formulation, principally due to the quantum origins of spin, cfitical behavior in a system whose dynamics incorporates
which is the basic element of most models studied in thidnertial effects; while there have been dynamical studies that
context. The second is the requirement for precise temperdJeclude the role of inertigl0], there is good reason to be-
ture regulation near the critical point; the most familiar form liéve that the presence of kinetic energy could have a signifi-
of MD is carried out at constant energy, corresponding to théant impact on the critical dynamics.
microcanonical ensemble, rather than in the canonical en- 1he organization of this paper is as follows. In Sec. Il we
semble where the critical temperature is a well-defined statitroduce the model, provide an overview of the dynamical
point. scaling theory of critical phenomena as it applies to this par-
Neither of these reasons precludes the use of MD in théicular study, and mention previous numerical work on re-
study of critical phenomena. It is possible to construct melated problems. In Sec. Il the computational methodology is
chanical models belonging to the same universality classediscussed. The results of the simulations, together with com-
as some of the better known spin systems. The resultin§arisons with theory 'and other numerlcgl studies, appear in
equations of motion can then be modified, so that instead opeC- IV. Our conclusions are presented in Sec. V.
the system being tied to a constant-energy hypersurface in
phase spacéthe microcanonical ensemblethe dynamics Il. BACKGROUND
can be subjected to a constant-temperature constraint, or
thermostat, which leads to the equilibrium behavior of the
canonical ensemble. Although this method is often employed In the present study, the spins of the familiar classical
for simulating fluids[5,6], one example being a homoge- Heisenberg model are replaced by linear molecules—for
neously sheared flow, where it is used to counteract the ezonvenience we will continue to apply the term “spin” to
fects of viscous heating, we are not aware of it having beeeach molecule—that are free to rotate about the sites of a
utilized previously in the study of critical phenomena. regular simple cubic latticéneedless to say, the same ap-

A. Model
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proach can also be applied to other kinds of continuous spiwhereS‘g(q) is given by

systems Assuming that nearest neighbors interact via the

usual Heisenberg spin-exchange interaction, the Hamiltonian Ky — f“’ K

for the system can be writteffior zero external field Se() —w Se(G,)do, 0

= > Izi wiz_JEJ(i,j) 55, (1) f, is a normalized shape function satisfying

| Thoasde, ®

wheres is the unit vector along the molecular ax@r spin
direction, ; the angular velocityl, the moment of inertia of
the molecule, and the strength of the spin-exchange inter- and the characteristic frequenay,(q,é) is defined to be the
action. The second of the sums is over all pairs of nearestmedian value determined from the integral
peighbor s?fins, with periodic boundaries used to reduce (b 1
inite-size effects. em%e) g _ Tk

A straightforward derivation of the Hamilton equations jwm(q,g) Se(G,0)dw 2 Se(a)- ©)
[11] from (1) results in a pair of first-order equations of

motion for each spin, The dynamic scaling hypothedi$2,13 states that in the
critical regionw,, has the functional form
l=35% 2 5, ) 0m(0,)=0"Q41(qé), (10
_ wherez is the dynamical critical exponent, and that the func-
S=wXs, (3)  tion f, also depends only on the produgg (whereq=|q)),

but not on the values off and ¢ separately; thus Eq6)
where the sum is over the neighbgref spini. Equation(2) becomes

is just the Euler equation for a linear rigid body.
SK(0,0) = 0y 'SHA fo( 0/ wm,qé). (1D

o . For finite-size systems, the divergent correlation lengjth

The general framework for classifying and analyzing dy-|imited by the linear size of the systelm and in the spirit of
namical critical phenomena is well establisté@,13. The  finite-size scaling theorf14] we can replace by L in (10)
scheme used there for assigning systems to different univegng (11) to obtain[10]
sality classes is based on entirely general considerations in-
volving the underlying dynamics and applicable conserva- wn(q,L)=L"%Q5(ql) (12
tion laws. Among other results, it was demonstrated how
systems with the same static critical behavuch as ferro- and
magnets and antiferromagngte/hich therefore belonged to « ek
the same static universality class, can belong to different SL(0,0) =@, S () fo(w/wy,ql). (13
dynamic universality classes. , i i

The study of critical dynamics deals with the space- andf We now substitute(12) into (13) we obtain
time-displaced spin-correlation function S'E(q ©)

CHr—r" ) =(sD(0) ~(SHON(SK(0), (@ TS HTlethab). 19

B. Dynamic scaling theory

where( ) denotes an ensemble average &rdk,y,z are the  The form of the arguments of the functiofgand (), pro-
Cartesian spin components. For the purposes of this analyswdes a clear guide to the kinds of tests that should be carried
the spins are indexed by a vecigrwhich also provides the out on the measured dynamic structure function in order to
spatial coordinates of the lattice sitessuming that the lat- establish the applicability of dynamic scaling.

tice spacing is unity The Fourier transform of4) is the All that remains is to determine a theoretical estimate for
(real-valued experimentally observable dynamic structurethe exponent based on a knowledge of the low-frequency
(or neutron-scatteringunction spin-wave dispersion relation at low temperaturgs|. For

the Heisenberg ferromagnet, whapéq) is quadratic inq,

1 Foo both dynamic scaling and renormalization group theory pre-
S, w)= — D exmq(r—r’)]f expli wt) dict [12,13 that
\ 277 rr’ —®
X CK(r—r’,t)dt. (5) z=3-plv, (19

where 8 and v are familiar static exponents whose three-
dimensional(3D) values are to be found ifil6], while for
the antiferromagnet, where(q) is linear, the exponent
value is

K o) S ©
Se(h0)= -y S| =7 a € s (6) z=d/2, (16)

The assumption is now made tHlt(q,w) can be expressed
in terms of the correlation lengté
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whered is the dimensionalitythese results apply fat be-  The derivation of this equation assumess =0, but if this
low the upper critical dimensignin 3D these predictions condition is incorporated into the construction of the initial
correspond t@=2.48 for the ferromagnet ar=1.5 for the  state then it is clear from the form of the first-order equations
antiferromagnet. The reason the antiferromagnetic version dhat it always remains true; note the itself does not ap-
the model is introduced will become apparent in Sec. IV. pear in(21).
The equations of motior(21) are energy conserving.
C. Previous numerical work Study of the critical region requires a more precisely regu-
_ ) ) lated temperature than that obtainable from MD of this kind,
An alternative approach to studyir§(q,w) is based on \yhich is subject to considerablsize-dependepttempera-
equations of motion that exclude all mention of inertial ef- e fiyctuations. The solution to this problem is the intro-
fects. The Hamiltonian in this casor zero external fieldis g ction of a thermostat. To convert the equations of motion
exactly that of the classical Heisenberg model, into a form that conserves kinetic energy, and thus tempera-
ture, the standard procedure of introducing a Lagrange mul-
H=-32 55, (17)  tiplier is followed. The resulf3] is that the equation of mo-
(i) tion (21) is replaced by

and the equations of motion, derived as the classical limit of

the quantum mechanical equatidig], have the form §=0 (5685 a8, (22

where

§=JsX2 5. (18 _ _
j  Zd [gn— (Sn Gt §)S0] 3
- % i

These equations describe spins precessing in the local fields
created by their neighbors, and conserve both magnetizatian

and interaction energy. Given that they are significantly dif-'S th? Lagrange multiplier th_at ensures constant klnetlc_en-
ferent from those used in the MD approach—E(®. and ergy; a is evaluated at each time step, immediately following

(3)—there is little reason to expect that the dynamical prop-tg%m_lt_f]rac?]on calculatl?n,_ ar;d used |r; the rlgh;-halqd S'tde.Of
erties will have very much in common. . The phase-space trajectories no longer obey Newtonian

Since there is no kinetic energy defined for this “spin- dynamics, but the deviations are smabviously decreasing

dynamics” model, results for a given temperature can onl)/a.s thle SVSteT Size 1S mcreaﬁet_lheleciﬁlhbnur}wt(r:]onﬁgura—_ |
be obtained by first generating a set of states drawn from thtéona Properties are now precisely those ot the canonica

; . nsemblg5,6].
canonical ensemble by some suitable Monte Carlo procedw% The equations of motiof22) are solved using a standard

and then using these states as the initial configurations Off%urth-order predictor-corrector methd@.3], with a time

series of independent dynamical computations. This ap- ~ . .
proach has been used in the spin-dynamics study of the d tepAt=0.01. To reduce the cumulative effects of numerical

namical properties of Heisenberg ferromagriéts] and an- nhaccuracy the Iengths'of the vecteysare ren.ormalize.d ev-
tiferromagnets[18] on the bcc lattice. In both cases the ery 50 time steps. Minor temperafure a_dquztmem_ce
measured dynamic structure functi®(q,w) was found to there are two degrees of freedom per spi(s?) In units
obey dynamic scaling theory, and taeexponents found to where bothl and the Boltzmann constakg are unity are

have the theoretically predicted values; finite-size effectﬂade by rescaling the values gfevery 200 steps; without

seemed more pronounced in the antiferromagnetic case. . is, a temperature drift of one part in Tooccurs over 1%
time steps, an amount which, though small, begins to ap-

proach the temperature precision required for critical-point
IIl. METHODOLOGY studies.
A. Equations of motion ~The regults_ reported here involve simple cubic lattices of
o . ) o sizeN=L" spins, withL ranging from 16 to 64. The com-
By redefining the time unit to bg/l/J we can eliminate plete run lengths are approximately 2. 2¢° time steps in
the quantitied andJ from the equations of motion, so that each case, of which the first@0® are used to allow the
Eq. (2) becomes system to equilibrate. The initial state consists of all spins
parallel, with angular velocities having a fixed magnitude
based on the desired temperature and randomly assigned di-
rections satisfying the requiremet-s=0. Typical compu-
tational speed for the largest system is approximatelys4
per spin step on an IBM 6000/590 processor; thus the largest
9= 2 S (20) run reported here.requires roughly 700 hours of computation.
] It should be pointed out that this approach can be used not
only to study the dynamical behavior of the model—the sub-
is a sum over the nearest neighbors oFor computational ject of this paper—but also the equilibrium static properties;
convenience the pair of first-order Ed8) and (19) can be  this will be addressed elsewhere. Although MD appears to be
replaced by a single second-order equaf®h competitive with the basic metropolis Monte Carlo approach,
. . it is unable to compete with recent refinements of the method
§=0-(s-g+5)s. (21)  (such as cluster sampling and histogram reweightihgt

W =5Xg, (19

where
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are able to yield extremely precise estimates of the static 0.25
critical propertied 16]. But, unlike Monte Carlo simulation,

MD provides the means for studying critical spin dynamics:
the only form of spin “dynamics” that can be studied by

T T T T T T [ T T 7 T T T T T T

0.20

Monte Carlo is entirely stochastic in nature, whereas MD - — n=1 -
correctly accounts for the contribution of inertial effects to i --- =2 ]
the dynamics. - -— 03 1
015 .
B. Spin correlations % i 7
In studying the spin correlations we restrict theectors 2 010 - ]
to those directed along the coordinate axes; this permits a i ]
considerable reduction in the computational effort and stor- L 4
age requirements of the progrdaiready close to 60 Mbytes 0.05 J
for the largest systepwithout any reduction in the effective- ' .
ness of the analysis. If, for example, we chogseg(q,0,0), R ]
where the values af are limited by the periodic boundaries -—r-_-*‘ij' E:}" e 3
. . . 0.00 EE Tl o T -y T
tog=2wn/L (n=1,2,...), the spatial Fourier transform in 0.00 0.02 0.04 0.06 0.08 010
(5) becomes w
2 exy:[iq-(r—r’)]sf(t)sr,(0)=2 exgiq(ry—ry)] FIG. 1. Transverse dynamic structure function for64 and
rr’ Myly g=nw/32,n=1, ... ,3;typical error bars are shown.

) (24) this implies that there are 16 sets of measurements in
progress simultaneously for the three smaller systems, and
32 for the largest. A total of 600 such intervals contribute to

This implies that only a 1D Fourier transform of the corre- the final result; in order to estimate error bar magnitudes the

lations between the summed spin components inytheg  results are divided into six sets and the rms spread used as a

plane is required, rather than a full 3D transform involving measure of the statistical error.

all the spins; a minor disadvantage of the technignet

relevant to the present studig that the original spatial cor-

X E s (0)
r

ry.,r
yrz I‘y,Z

» srm}

relations cannot be recovered from these results. For im- IV. RESULTS
proved statistics, the other on-axis components| afn be In this discussion the focus is on the dynamical behavior
similarly treated, and the three sets of results averaged.  resulting from MD simulations at the critical temperatlte
For a finite system af . the magnetizatioriper spin of the infinite system. The Monte Carlo method has proved
capable of producing very precide, estimates, as well as
m= i z S (25) critical exponent values; for the simple cubic lattige units
N 4 of J) T.=1.443(the actual value is 1.442 92®.000 077

[16].
iS nonzero, so the spin correlations should be decomposed In Fig. 1 we show the transverse dynamic structure func-
into longitudinal(parallel tom) and transverse parts, just as tion S'(q,w) for the largest systerfL =64) and for the low-
is the practice below .. Thus instead of evaluating the cor- est threeq values, namelyg=n#/32,n=1, ... ,3(here and
relations between the Cartesian components of the spin ve@ subsequent figures error bars are included for a fraction of
tors, we consider the correlations between the spin compdhe data points on)y The MD results show spin-wave peaks

nents, at g-dependent frequenci€rote thatq and w are expressed
in dimensionless MD unils There is no evidence for a cen-
#Z(S “€m)€m, (26) tral peak(corresponding to spin diffusignn these results; if
one exists it is completely swamped by the pair of spin-wave
S=s —# , (27) peaks(the curve is of course symmetric abauwt=0). Corre-

sponding results for the longitudinal functid®(q,») are
wheree,,=m/|m|. This leads us to the longitudinal and trans- shown in Fig. 2; here the central peak is the only feature
verse dynamic structure functior®(q,w) and S'(q,w), the  present. By way of contrast, the spin-dynamics apprdganh
latter computed as an average of separate contributions frothe bcc latticg shows evidence of a central peak, even in the
each of the three components sjf transverse case, for both the ferromagngti@) and antifer-

The spin correlations are measured every 20 time steps;ramagnetid 18] systems.

full set of correlation function measurements extends over an The S(q,w) results presented here have not been sub-
interval exceeding 400 time unifproviding a total of 2049 jected to any smoothing, and because the correlation func-
data points for L=16, 32, 48, and twice this value for tions are measured out to sufficiently long times that, despite
L=64. To improve the statistics, the measurement intervalsritical slowing down, the observable correlations are essen-
are made to overlap; collection of data for a new set of cortially at the noise leve[roughly 0.01 for the transverse cor-
relation measurements is begun every 128th measurementrelation functions that have been normalized so that
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FIG. 2. Longitudinal dynamic structure functigsee Fig. L FIG. 4. Longitudinal dynamic structure functidsee Fig. 3

C'(r,0)=1], there is no need to apply a window functigi®] . . e -
to the data prior to the Fourier transformation, as was the . The dynamic scaling theory makes a specific prediction,

case in the spin-dynamics study of the ferromagiie. given by Eq.(12), as to the way the median frequency should

) . i S . vary with q and L, namely, that for the correct choice of
While windowing does eliminate much of the noise from the 7
. ; ; exponentz, the value ofL*w,, should depend only on the
data, it also has the effect of lowering and broadening an

: . ; . {oducth. In Fig. 5 we show these results fayL/27
peaks that are present; even a Gaussian window function th_l 4 using the antiferromaanetic exponent value
drops to about 0.04 of the maximum height at the extreme of ~; " " 9 9 P

the L=64 measurement interval reduces ®éq,w) peak éZtle 3 k’)\l otg tnh:m?:;agté;ﬁlrl]y rlﬁgz?n_ta; l':f?};ﬁr:#ér?sepirﬁ' the
height by about 10%, and this is best avoided. y oy 9 Y: 9

To provide some indication of the way the peaks changé’alue ofz (by a few percentdestroys this theoretically pre-

as the system size increases, Figs. 3 and 4 Sitgyw) and gg:égﬂst:eers]ﬁ\élr?grw;vgli ?\"t{hgf;?ee irr?\?c?lcz ddrops for higher
S'(q,w) at the smallest possible wave numiger 27/L for The other prediction gf dynamic scaliﬁ theory to be
L=16,...,64. The peaks are seen to become narrowér as P y 9 y

) ; . . > tested here is the nature of the scaled formSiq, ),
increases, and in the transverse case, to increase in hei ; "

. amely, Eq(14). Figure 6 shows the results fqlL/27=1,2
and also shift to smalles.

0.25 TTrrrJrrrr vl rrr T[T 1T T 7 T T 1T 80 FrT T T T rT T rT T rrr T rrrr 1 rrrr [ 1T rrT
0.20 . i 7 T
] oo F ¥ .
0.15 - I T - b
— - - I_——’ —— n=1 -
4 £ =
3’- ] 3 40 —— n=2 _
173 _ - | —e- n=3 i
0.10 . I e n=d _
] F————— - Fommm 3
i 20 F -
0.05 > - _
L = 2 3
0.00 T R B RO =] d 0 I OO 00 N T YT O T T T A
0.00 0.05 0.10 0.15 0.20 0.25 10 20 30 40 50 60 70
w L
FIG. 3. Transverse dynamic structure functionder 27/L and FIG. 5. Scaled median frequentyw,, as a function ofL for

L=16,32,48,64. n=qL2w=1,..., 4.,
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FIG. 6. Scaled transverse dynamic structure functions for
L=32,48,64 andgL/27=1 (left peak$ and 2 (right peaks; here
z=1.5.

and L=32,48,64, with the exponent value=1.5: as pre- duality, although slightly too large at low; the quality of
dicted, the curves for differert but the same|L coincide to the data and possible residual finite-size effects do not war-
within measurement accura@his conclusion is not particu- "ant a more refined attempt at curve fitting that would in-
larly sensitive to a small variation—less than 10%—zn clude a small contribution from another Lorentzian«atO.

The spread of values between the different curves is simila(f‘ somewhat poorer fit is obtained using the alternative func-

to that observed in the spin-dynamics study of the antiferrotional form
magnet{18].

FIG. 7. Dispersion curves at and below beldwfor L =32; the
T=0 result is also shown.

Clearly the results are consistent with the vahiel.5, #ﬁ (29)
which is the result predicted for the antiferromagnetic I'“+ (0"~ wj)

Heisenberg model. The reasons for not expecting to obtain _
the ferromagnetic valuéz=2.48 are that, unlike spin dy- Proposed in[12]; the values ofA andI" used here are
namics, the magnetization is not conserved by the MD equal-25%<10 ™ and 6<10"", respectively. _ _
tions of motion, and that the spin-wave dispersion relation is Both MD and spin dynamics support dynamic scaling,
linear—as shown in Fig. 7 where the locations of the@lthough the results differ in detail—in particular, the
maxima ofS'(q,w) are plotted forL =32 and temperatures
0.8, 1.0, andT, (the T=0 result,w(q) =2 sin(g/2), is also
included—the dependence exhibited by the antiferromagnet. 0.20
By way of contrast, the corresponding Monte Carlo estimate
for the Heisenberg ferromagnets-1.96[20], a result due
entirely to the underlying relaxation mechanism.

To emphasize the difference in the dynamics between MD
and spin dynamics, Fig. 8 shows the magnetizatiof=|m|)
as a function of time for the duration of the=64 run; each
data point is the average of the magnitude of the magnetiza-
tion vectorm over 2<10* time steps, an interval consider- <
ably greater than that for which individual spin correlations &
persist. The results appear very noisy, with no obvious cor- I 7
relations. In the calculation for a ferromagnet based on spin 0.10 [t .
dynamics, the magnetization would remain fixed at the value H .
reached during the preceding Monte Carlo phase. H .

Figure 9 shows a simple visual fit & q,w) for the low- I 4
estq value (7/32) using a double Lorentzian i

L L L L L D L L L L L e e e |

015 M ]

0.05|||||||||||I|||||||||||
AT AT ( 28) 0 6000 12000 18000 24000

T2 (0—09 T2 ot wy)? X

to describe the spin-wave peaks; the parameter values are
A=2x10"3 1I'=0.01, andw;=0.02. The fit is of reasonable FIG. 8. Magnetization as a function of tinjfe =64).
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025 T T T T T T T T T T T T tonian system into which other features, such as lattice vi-
brations, can readily be incorporated, and it also provides the
basis for the study of related phenomena, such as the rota-

0.20 tional phases of molecular crystals.

— L=64 V. CONCLUSIONS
—— Eq.(28)

--- Eq.(29)

0.15 The dynamical critical behavior of a dynamical version of

the Heisenberg ferromagnet has been studied by MD simu-
lation. The results for the dynamic structure function are
found to be in reasonable agreement with the predictions of
dynamical scaling theory. The dynamical critical exporent
does not have the ferromagnetic valize=2.48 but rather
the value predicted for the antiferromagi(et1.5), indicat-
ing that the model belongs to the dynamical universality
class of the antiferromagnet. The plausibility of this result
derives from the fact that, due to the inclusion of the kinetic-
0.00 0.02 0.04 0.06 0.08 0.10 energy term, the low-temperature dispersion relation is
w linear—as in the antiferromagnet—as opposed to the qua-
dratic dependence which arises if the ferromagnetic Hamil-
FIG. 9. Visual curve fits t@(q, ) for q=/32 (L=64) using tonian contains the_ potential energy term alone. The fact_that
the double Lorentzian of Eq28) and the alternative form given in the MD results differ from those_ obtained by .the spin-
Eq. (29). Qynamlcs approac(where .the kinetic energy term is absent
is further evidence of the important role played by the equa-
strength of the transverse central peak. Because of the diffetions of motion in determining the dynamical universality
ent dynamics, MD requires more computation than spin dy<¢lass.
namics and does not benefit from the decorrelating effects
produced by the Monte Carlo construction of initial states;
furthermore, the time intervals over which the correlations
are measured are several times longer for MD than for spin This research was supported in part by U.S.-Israel Bina-
dynamics(in the reduced units appropriate to each problem tional Science Foundation Grant No. 92-251 and by NSF
On the other hand, the MD approach addresses a Hamifsrant No. DMR-9405018.

S'qw)

0.10

I\I|II||"|||l||l|||

0.05
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